Characterization of Dielectric Breakdown in High-Voltage GaN MIS-HEMTs

Shireen Warnock and Jesús A. del Alamo

Microsystems Technology Laboratories (MTL) Massachusetts Institute of Technology (MIT)

Outline

- Motivation & Challenges
- Time-Dependent Dielectric Breakdown (TDDB) Experiments:
 - Current-Voltage
 - Capacitance-Voltage
- Progressive Breakdown
- Conclusions

Motivation

GaN Field-Effect Transistors (FETs) promising for high-voltage power applications \rightarrow more efficient & smaller footprint

Consumer Electronics

Centorida

Inverse piezoelectric effect J. A. del Alamo, MR 2009

Time-Dependent Dielectric Breakdown

- High gate bias → defect generation → catastrophic oxide breakdown
- Often dictates lifetime of chip

D. R. Wolters, Philips J. Res. 1985

Dielectric Reliability in GaN FETs

AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs)

Very little currently known about TDDB in GaN → goal of this work TDDB Experiments: Current-Voltage

GaN MIS-HEMTs for TDDB study

- GaN MIS-HEMTs from industry collaboration: depletion-mode
- Gate stack has multiple layers & interfaces
 - → Uncertain electric field distribution
 - \rightarrow Many trapping sites
- Complex dynamics involved \rightarrow Unstable and fast changing V_T

Classic TDDB Experiment

Constant gate voltage stress experiment:

S. Warnock, CS MANTECH 2015

Experiment gives time to breakdown and shows generation of stress-induced leakage current (SILC)

GaN TDDB Statistics

Examine statistics for different V_{Gstress}

- Weibull distribution
- As $\rm V_{Gstress}$ \uparrow , $\rm t_{BD}$ \downarrow
- Parallel statistics \rightarrow consistent with results in silicon

TDDB with Periodic Characterization

Pause TDDB stress and sweep transfer characteristics at V_{DS} =0.1 V

- Large V_T shift \rightarrow trapping in dielectric or AlGaN
- Immediate S degradation → interface state generation early in experiment

Validity of Characterization Approach

Compare statistics for standard and interrupted schemes

Same statistics for both schemes \rightarrow characterization is benign

Step-Stress TDDB

- Step-stress to examine early stages of degradation
- Step V_{Gstress} in 0.5 V increments until breakdown

• High $V_{Gstress}$: $I_{G} \uparrow \Rightarrow SILC$

Step-Stress TDDB

Transfer characteristics in between stress steps

- S and V_T degradation is progressive
- At $V_{Gstress} \sim 12.5 \text{ V}$, $\Delta V_T < 0$ (red lines)
 - Sudden increase in S, appearance of SILC→ interface state generation

TDDB Experiments: Capacitance-Voltage

C-V Characterization

• At V_{GS} >1 V, conduction band of AlGaN starts being populated

C-V Characterization

 TDDB characterized in regime where AlGaN is populated with electrons

Constant V_{Gstress} TDDB

 C_{GG} vs. stress time in 5 devices at 5 different frequencies:

- \rightarrow C_{GG} \uparrow
- \rightarrow Frequency dispersion \uparrow
- Consistent with trap creation and trapping
 - In dielectric and/or at MIS interface

Progressive Breakdown

Observation of Progressive Breakdown

Revisit classic TDDB experiment: $V_{Gstress}$ =12.6 V, V_{DS} =0 V

Observation of Progressive Breakdown

Revisit classic TDDB experiment: $V_{Gstress}$ =12.6 V, V_{DS} =0 V

Near breakdown, I_G becomes noisy \rightarrow progressive breakdown (PBD)

Observation of Progressive Breakdown

Revisit classic TDDB experiment: $V_{Gstress}$ =12.6 V, V_{DS} =0 V

Near breakdown, I_G becomes noisy \rightarrow progressive breakdown (PBD)

PBD Statistics

Compare statistics for $t_{\mbox{\tiny PBD}}$ and $t_{\mbox{\tiny HBD}}$

Statistics nearly parallel \rightarrow breakdown mechanism is same

PBD Statistics

- Examine PBD and HBD times for each individual device
- PBD and HBD in same device linked by a line

HBD, PBD uncorrelated from device to device \rightarrow dielectric defect generation is truly random

Conclusions

- Developed methodology to study TDDB in GaN MIS-HEMTs
- TDDB behavior consistent with Si MOSFETs:
 - Weibull distribution
 - SILC before breakdown
 - Clear observation of Progressive Breakdown
- For moderate gate voltage stress:
 - $-\Delta V_T > 0$ $-I_G \downarrow$
- Beyond critical value of V_{Gstress}:
 - $-\Delta V_{T} < 0$
 - Sudden ∆S 个
 - Capacitance frequency dispersion \uparrow

Conclusions

- Developed methodology to study TDDB in GaN MIS-HEMTs
- TDDB behavior consistent with Si MOSFETs:
 - Weibull distribution
 - SILC before breakdown
 - Clear observation of Progressive Breakdown
- For moderate gate voltage stress:
 - $\begin{bmatrix} -\Delta V_T > 0 \\ -I_G \downarrow \end{bmatrix}$ Consistent with electron trapping
- Beyond critical value of V_{Gstress}:
 - $-\Delta V_{T} < 0$
 - Sudden ∆S 个
 - Capacitance frequency dispersion \uparrow

Conclusions

- Developed methodology to study TDDB in GaN MIS-HEMTs
- TDDB behavior consistent with Si MOSFETs:
 - Weibull distribution
 - SILC before breakdown
 - Clear observation of Progressive Breakdown
- For moderate gate voltage stress:
 - $\begin{bmatrix} -\Delta V_T > 0 \\ -I_G \downarrow \end{bmatrix}$ Consistent with electron trapping
- Beyond critical value of V_{Gstress}:
 - $-\Delta V_{T} < 0$
 - Sudden ∆S 个
 - Capacitance frequency dispersion 个」 interface

Onset of trap generation in dielectric/at MIS interface

Acknowledgements

Questions?